The COVID-19 pandemic has increased the demand for disposable N95 respirators. Re-usable elastomeric respirators may provide a suitable alternative. Proprietary elastomeric respirator filters may become depleted as demand increases. An alternative may be the virus/bacterial filters used in anaesthesia circuits, if they can be adequately fitted onto the elastomeric respirators. In addition, many re-usable elastomeric respirators do not filter exhaled breaths. If used for sterile procedures, this would also require modification. We designed a 3D-printed adaptor that permits elastomeric respirators to interface with anaesthesia circuit filters and created a simple modification to divert exhaled breaths through the filter. We conducted a feasibility study evaluating the performance of our modified elastomeric respirators. A convenience sample of eight volunteers was recruited. Quantitative fit testing, respiratory rate and end-tidal carbon dioxide were recorded during fit testing exercises and after 1 h of wear. All eight volunteers obtained excellent quantitative fit testing throughout the trial. The mean (SD) end-tidal carbon dioxide was 4.5 (0.5) kPa and 4.6 (0.4) kPa at baseline and after 1 h of wear (p = 0.148). The mean (SD) respiratory rate was 17 (4) breaths.min-1 and 17 (3) breaths.min-1 at baseline and after 1 h of wear (p = 0.435). Four out of eight subjects self-reported discomfort; two reported facial pressure, one reported exhalation resistance and one reported transient dizziness on exertion. Re-usable elastomeric respirators to utilise anaesthesia circuit filters through a 3D-printed adaptor may be a potential alternative to disposable N95 respirators during the COVID-19 pandemic.
Keywords: 3D-printed adaptor; COVID-19; anaesthesia circuit filter; breathing system filter; respirator.
© 2020 Association of Anaesthetists.