Background: Cellular immunometabolism among people living with HIV (PLWH) on antiretroviral therapy (ART) remains under investigated. We assessed the relationships between mitochondrial oxidative phosphorylation (OXPHOS) in peripheral blood mononuclear cells (PBMCs) and blood parameters associated with HIV immune dysregulation.
Methods: PLWH ≥40 years old and on stable ART ≥3 months were enrolled (N = 149). OXPHOS complex I (CI, NADH dehydrogenase) and complex IV (CIV, cytochrome c oxidase) protein levels in PBMCs were quantified using immunoassays. Monocyte subsets and markers of T-cell activation, senescence, and exhaustion were measured on PBMC by flow cytometry. Plasma inflammatory mediators were quantified using a multiplex assay. HIV-uninfected group (N = 44) of similar age, gender, and ethnicity had available OXPHOS levels.
Results: PLWH had a median age of 51 years. Majority were male (88.6%), Caucasian (57.7%), and with undetectable plasma HIV RNA <50 copies/mL (84.6%). Median CI level was lower in PLWH compared with the HIV-seronegative group (65.5 vs 155.0 optical density/μg protein x 103, p <0.0001). There was no significant difference in median CIV levels. Lower OXPHOS levels correlated with lower CD4% and CD4/CD8 ratio. On multivariable linear regression adjusted for age, current use of zidovudine/didanosine, and HIV RNA (detectable versus undetectable), lower OXPHOS levels were significantly associated with higher MPO, SAA, SAP, and sVCAM, and higher frequencies of intermediate (CD14++CD16+) monocytes and TIGIT+TIM3+ CD4 T-cell (p<0.01).
Conclusion: CI PBMC protein levels were decreased in PLWH on ART. Decreased OXPHOS correlated with disease severity and inflammation. Further studies on the relationship between immunometabolism and immune dysregulation in HIV are warranted.