Clinical Named Entity Recognition (CNER) is a critical task which aims to identify and classify clinical terms in electronic medical records. In recent years, deep neural networks have achieved significant success in CNER. However, these methods require high-quality and large-scale labeled clinical data, which is challenging and expensive to obtain, especially data on Chinese clinical records. To tackle the Chinese CNER task, we pre-train BERT model on the unlabeled Chinese clinical records, which can leverage the unlabeled domain-specific knowledge. Different layers such as Long Short-Term Memory (LSTM) and Conditional Random Field (CRF) are used to extract the text features and decode the predicted tags respectively. In addition, we propose a new strategy to incorporate dictionary features into the model. Radical features of Chinese characters are used to improve the model performance as well. To the best of our knowledge, our ensemble model outperforms the state of the art models which achieves 89.56% strict F1 score on the CCKS-2018 dataset and 91.60% F1 score on CCKS-2017 dataset.
Keywords: BERT; CRF; Clinical named entity recognition; LSTM.
Copyright © 2020 Elsevier Inc. All rights reserved.