A spherical crystal diffraction imager for Sandia's Z Pulsed Power Facility

Rev Sci Instrum. 2020 Apr 1;91(4):043106. doi: 10.1063/1.5132323.

Abstract

Sandia's Z Pulsed Power Facility is able to dynamically compress matter to extreme states with exceptional uniformity, duration, and size, which are ideal for investigating fundamental material properties of high energy density conditions. X-ray diffraction (XRD) is a key atomic scale probe since it provides direct observation of the compression and strain of the crystal lattice and is used to detect, identify, and quantify phase transitions. Because of the destructive nature of Z-Dynamic Material Property (DMP) experiments and low signal vs background emission levels of XRD, it is very challenging to detect a diffraction signal close to the Z-DMP load and to recover the data. We have developed a new Spherical Crystal Diffraction Imager (SCDI) diagnostic to relay and image the diffracted x-ray pattern away from the load debris field. The SCDI diagnostic utilizes the Z-Beamlet laser to generate 6.2-keV Mn-Heα x rays to probe a shock-compressed material on the Z-DMP load. A spherically bent crystal composed of highly oriented pyrolytic graphite is used to collect and focus the diffracted x rays into a 1-in. thick tungsten housing, where an image plate is used to record the data.