Background: Repeated exposure to predator scent stress (PSS) has been used as an animal model of complex post-traumatic stress disorder (CPTSD). The aim of the current study was to assess brain monoamines and their primary metabolites concentrations in male Wistar rats (16 control, 19 exposed to chronic PSS).
Methods: Rats were exposed to PSS for ten days. Fourteen days later, the rats' anxiety index (AI) was assessed with an elevated plus maze test; based on differences in AI, the rats were segregated into low- (AI ≤ 0.8, n = 9) and high- (AI > 0.8, n = 10) anxiety phenotypes. Plasma corticosterone levels were measured by radioimmunoassay. Brain monoamines and their metabolites were measured using high-performance liquid chromatography with electrochemical detector.
Results: PSS exposure led to a significant increase in average rats' AI and a reduction in plasma corticosterone levels. Medullar catecholamines and hippocampal and neocortical norepinephrine levels were increased, and pontine norepinephrine and cerebellar dopamine decreased in PSS-exposed rats. Cerebellar norepinephrine levels were increased, and midbrain, hippocampal, and neocortical 5-HT and hypothalamic and hippocampal dopamine levels-decreased in high-, but not in low-anxiety rats. The decrease in hippocampal dopamine levels was accompanied by an increase of DOPAC levels, suggesting and abnormal metabolism of this transmitter.
Conclusion: Reductions in 5-HT and dopamine in mid- and forebrain brain areas are associated with stress susceptibility in rodents and perhaps also with PTSD vulnerability in humans. Dopamine and 5-HT metabolism and its modulation by glucocorticoids appear to play a role in stress susceptibility and in CPTSD.
Keywords: Predator scent stress (PSS); anxiety; corticosterone; dopamine; monoamine oxidase type B (MAO-B); norepinephrine; serotonin (5-HT).
Copyright © 2020 Elsevier Ltd. All rights reserved.