As the immature oocytes are submitted to cryopreservation, their surrounding cumulus cells (CCs) will inevitably suffer, which may have some adverse effects on subsequent oocyte maturation and development. So far, little is known about the molecular differences in CCs of immature oocytes after vitrification. The aim of this study therefore was to analyze the protein profile of CCs derived from vitrified porcine immature oocytes following in vitro maturation, using TMT-based quantitative proteomic approach. A total of 5910 proteins were identified, and 88 of them presented significant difference, with 46 up-regulated and 42 down-regulated proteins. Gene Ontology enrichment analysis revealed that cell cycle phase transition, mitotic cell cycle phase transition, positive regulation of cell differentiation and regulation of oogenesis were significantly down-regulated within the biological process. After Kyoto Encyclopedia of Genes and Genomes pathway analysis, some up-regulated proteins were significantly enriched in TGF-beta signaling pathway and 4 pathways related to steroid hormones. Furthermore, 10 selected proteins were quantified and verified by a parallel reaction monitoring technique, indicating a high reliability of the TMT results. In conclusion, vitrification affects protein profile of CCs as well as their biological functions, which will offer a new perspective to understand the reasons for decline in maturation quality of vitrified immature oocytes.
Keywords: Cumulus cell; Immature oocyte; Pig; Proteomics; TMT; Vitrification.
Copyright © 2020 Elsevier Inc. All rights reserved.