Purpose: We aim to illustrate the diagnostic performance of diffusional kurtosis imaging (DKI) in the diagnosis of gliomas.
Methods: A review protocol was developed according to the (PRISMA-P) checklist, registered in the international prospective register of systematic reviews (PROSPERO) and published. A literature search in 4 databases was performed using the keywords 'glioma' and 'diffusional kurtosis'. After applying a robust inclusion/exclusion criteria, included articles were independently evaluated according to the QUADAS-2 tool and data extraction was done. Reported sensitivities and specificities were used to construct 2 × 2 tables and paired forest plots using the Review Manager (RevMan®) software. A random-effect model was pursued using the hierarchical summary receiver operator characteristics.
Results: A total of 216 hits were retrieved. Considering duplicates and inclusion criteria, 23 articles were eligible for full-text reading. Ultimately, 19 studies were eligible for final inclusion. The quality assessment revealed 9 studies with low risk of bias in the 4 domains. Using a bivariate random-effect model for data synthesis, summary ROC curve showed a pooled area under the curve (AUC) of 0.92 and estimated sensitivity of 0.87 (95% CI 0.78-0.92) in high-/low-grade gliomas' differentiation. A mean difference in mean kurtosis (MK) value between HGG and LGG of 0.22 (95% CI 0.25-0.19) was illustrated (p value = 0.0014) with moderate heterogeneity (I2 = 73.8%).
Conclusion: DKI shows good diagnostic accuracy in the differentiation of high- and low-grade gliomas further supporting its potential role in clinical practice. Further exploration of DKI in differentiating IDH status and in characterising non-glioma CNS tumours is however needed.
Keywords: Diagnosis; Diffusion-weighted imaging; Gliomas; Magnetic resonance imaging.