Strain Effect Enhanced Ultrasensitive MoS2 Nanoscroll Avalanche Photodetector

J Phys Chem Lett. 2020 Jun 4;11(11):4490-4497. doi: 10.1021/acs.jpclett.0c00861. Epub 2020 May 27.

Abstract

Two-dimensional (2D) materials and their derived quasi one-dimensional structure provide incredible possibilities for the field of photoelectric detection due to their intrinsic optical and electrical properties. However, the photogenerated carriers in atomically thin media are poor due to the low optical absorption, which greatly limits their performance. Here, in the MoS2 nanoscroll photodetector, we meticulously investigated the avalanche multiplication effect. The results show that by employing the nanoscroll structure, the required threshold electrical field for triggering avalanche multiplication is significantly lower than that of MoS2 flake due to the modulation of the energy band and intervalley scattering through the strain effect. Consequently, avalanche multiplication could efficiently enhance the photoresponsivity to >104 A/W. Furthermore, enhanced avalanche multiplication could be generalized to other TMDCs through theoretical prediction. The results not only are significant for the understanding of the intrinsic nature of 2D materials but also reveal meaningful advances in high-performance and low-power consumption photodetection.