The phonon linewidth of isotopically controlled hexagonal boron nitride (h-BN) single crystals has been determined by Raman scattering. The scattering by isotopic mass disorder induces a phonon broadening that is largest for boron 11 fractions around 0.65. Lowest-order perturbation theory does not suffice to explain the dependence of the isotopic broadening on isotopic composition. A multiple-scattering theory based on the coherent potential approximation provides a good quantitative account of the phonon shift and broadening with isotopic composition observed in the experiments. Isotopic-disorder scattering is shown to have a prominent role in limiting the optical-phonon lifetime in h-BN.