The aim of this study was to estimate the prevalence of antimicrobial resistance (AMR) in Escherichia coli from a dog population in Spain and assess specific virulence factors. Susceptibility to 22 antimicrobials was tested along with the production of extended-spectrum β-lactamases (ESBLs) and AmpC in faecal isolates from 100 dogs. Virulence-related genes associated with attaching and effacing E. coli (eae, Stx1, Stx2) and extraintestinal pathogenic E. coli - ExPEC - (papC, hlyA and cnf1) were detected by PCR. At least one kind of AMR was observed in 73% of the isolates. The highest prevalences corresponded to penicillin (45%), aminoglycoside (40%) and non-extended spectrum cephalosporin (39%) classes. Multidrug resistance (MDR) was observed in 53.4% of the resistant isolates. No resistance to colistin was found. Production of ESBL/AmpC enzymes was detected in 5% of E. coli. Shiga toxin-producing E. coli were not observed, enteropathogenic E. coli were identified in only 12% of them, and ExPEC were found in 25%. Dog faeces can be a source of E. coli strains potentially presenting a threat to humans through their virulence factors or AMR. The non-hygienic keeping of animals may increase the risk of colonisation of such pathogens in humans.
Keywords: Escherichia coli; Spain; antimicrobial resistance; dog; virulence factors.