Objective: Development of an effective mucosal vaccine to induce specific immune responses against Foot-and-mouth disease virus (FMDV).
Results: For this purpose, the FMDV VP1 gene (SPVP1) was optimized and synthesized based on the codon bias of Lactococcus lactis (L. lactis), and then incorporated in the plasmid pNZ8148. L. lactis NZ9000 containing the pNZ8148-SPVP1 recombinant plasmid was used as an oral delivery vehicle to induce anti-FMDV mucosal and systemic immune responses in mice. After confirmation that the SPVP1 protein was expressed successfully in the recombinant L. latic, the mice were orally challenged with NZ9000-pNZ8148, NZ9000-pNZ8148-SPVP1, phosphate-buffered saline as a mock infection group, or with inactivated vaccine as a positive group. Mice immunized with NZ9000-pNZ8148-SPVP1 produced high levels of mucosal secretory IgA (sIgA), antigen-specific serum IgG, IgA, and neutralizing antibodies, and developed stronger cell-mediated immune reactions and significant T spleen lymphocyte proliferation. Furthermore, the recombinant group generated much higher levels of IFN-γ, IL-2, IL-4, IL-5, and IL-10 than the other groups.
Conclusions: Potent immune responses were successfully elicited in mice with FMDV VP1 delivered through L. lactis.
Keywords: Foot-and-mouth disease virus; Lactococcus lactis; Mucosal immunity; Oral vaccine; VP1 protein.