Background: In treatment-resistant major depressive disorder (MDD), electroconvulsive therapy (ECT) is a treatment with high efficacy. While knowledge regarding changes in brain structure following ECT is growing, the effects of ECT on brain function during emotional processing are largely unknown.
Objective: We investigated the effects of ECT on the activity of the anterior cingulate cortex (ACC) and amygdala during negative emotional stimuli processing and its association with clinical response.
Methods: In this non-randomized longitudinal study, patients with MDD (n = 37) were assessed before and after treatment with ECT. Healthy controls (n = 37) were matched regarding age and gender. Functional magnetic resonance imaging (fMRI) was obtained twice, at baseline and after six weeks using a supraliminal face-matching paradigm. In order to evaluate effects of clinical response, additional post-hoc analyses were performed comparing responders to non-responders.
Results: After ECT, patients with MDD showed a statistically significant increase in ACC activity during processing of negative emotional stimuli (pFWE = .039). This effect was driven by responders (pFWE = .023), while non-responders showed no increase. Responders also had lower pre-treatment ACC activity compared to non-responders (pFWE = .025). No significant effects in the amygdala could be observed.
Conclusions: ECT leads to brain functional changes in the ACC, a relevant region for emotional regulation during processing of negative stimuli. Furthermore, baseline ACC activity might serve as a biomarker for treatment response. Findings are in accordance with recent studies highlighting properties of pre-treatment ACC to be associated with general antidepressive treatment response.
Keywords: Biomarker; Depression; Electroconvulsive therapy; Emotional processing; Functional magnetic resonance imaging; Response.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.