Decreased pancreatic acinar cell number in type 1 diabetes

Diabetologia. 2020 Jul;63(7):1418-1423. doi: 10.1007/s00125-020-05155-y. Epub 2020 May 9.

Abstract

Aims/hypothesis: Individuals with longstanding and recent-onset type 1 diabetes have a smaller pancreas. Since beta cells represent a very small portion of the pancreas, the loss of pancreas volume in diabetes is primarily due to the loss of pancreatic exocrine mass. However, the structural changes in the exocrine pancreas in diabetes are not well understood.

Methods: To characterise the pancreatic endocrine and exocrine compartments in diabetes, we studied pancreases from adult donors with type 1 diabetes compared with similarly aged donors without diabetes. Islet cell mass, islet morphometry, exocrine mass, acinar cell size and number and pancreas fibrosis were assessed by immunohistochemical staining. To better understand possible mechanisms of altered pancreas size, we measured pancreas size in three mouse models of insulin deficiency.

Results: Pancreases from donors with type 1 diabetes were approximately 45% smaller than those from donors without diabetes (47.4 ± 2.6 vs 85.7 ± 3.7 g), independent of diabetes duration or age of onset. Diabetic donor pancreases had decreased beta cell mass (0.061 ± 0.025 vs 0.94 ± 0.21 g) and reduced total exocrine mass (42.0 ± 4.9 vs 96.1 ± 6.5 g). Diabetic acinar cells were similar in size but fewer in number compared with those in pancreases from non-diabetic donors (63.7 ± 8.1 × 109 vs 121.6 ± 12.2 × 109 cells/pancreas), likely accounting for the difference in pancreas size. Within the type 1 diabetes exocrine tissue, there was a greater degree of fibrosis. The pancreases in three mouse models of insulin deficiency were similar in size to those in control mice.

Conclusions/interpretation: Pancreases from donors with type 1 diabetes are smaller than normal donor pancreases because exocrine cells are fewer in number rather than smaller in size; these changes occur early in the disease process. Our mouse data suggest that decreased pancreas size in type 1 diabetes is not directly caused by insulin deficiency, but the precise mechanism responsible remains unclear.

Keywords: Acinar cells; Atrophy; Exocrine; Fibrosis; Histology; Pancreas; Pathogenesis; Type 1 diabetes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acinar Cells / metabolism
  • Animals
  • Diabetes Mellitus, Type 1 / metabolism*
  • Female
  • Insulin-Secreting Cells / metabolism
  • Islets of Langerhans / metabolism
  • Mice
  • Pancreas / metabolism
  • Pancreas, Exocrine / metabolism*