Pathophysiological implications of hypoxia in human diseases

J Biomed Sci. 2020 May 11;27(1):63. doi: 10.1186/s12929-020-00658-7.

Abstract

Oxygen is essentially required by most eukaryotic organisms as a scavenger to remove harmful electron and hydrogen ions or as a critical substrate to ensure the proper execution of enzymatic reactions. All nucleated cells can sense oxygen concentration and respond to reduced oxygen availability (hypoxia). When oxygen delivery is disrupted or reduced, the organisms will develop numerous adaptive mechanisms to facilitate cells survived in the hypoxic condition. Normally, such hypoxic response will cease when oxygen level is restored. However, the situation becomes complicated if hypoxic stress persists (chronic hypoxia) or cyclic normoxia-hypoxia phenomenon occurs (intermittent hypoxia). A series of chain reaction-like gene expression cascade, termed hypoxia-mediated gene regulatory network, will be initiated under such prolonged or intermittent hypoxic conditions and subsequently leads to alteration of cellular function and/or behaviors. As a result, irreversible processes occur that may cause physiological disorder or even pathological consequences. A growing body of evidence implicates that hypoxia plays critical roles in the pathogenesis of major causes of mortality including cancer, myocardial ischemia, metabolic diseases, and chronic heart and kidney diseases, and in reproductive diseases such as preeclampsia and endometriosis. This review article will summarize current understandings regarding the molecular mechanism of hypoxia in these common and important diseases.

Keywords: Cancer; Cardiomyopathy; Chronic kidney disease; Endometriosis; Hypoxia; Metabolic diseases; Preeclampsia.

Publication types

  • Review

MeSH terms

  • Chronic Disease
  • Endometriosis / etiology
  • Endometriosis / physiopathology*
  • Female
  • Heart Diseases / etiology
  • Heart Diseases / physiopathology*
  • Humans
  • Hypoxia / complications
  • Hypoxia / physiopathology*
  • Kidney Diseases / etiology
  • Kidney Diseases / physiopathology*
  • Male
  • Metabolic Diseases / etiology
  • Metabolic Diseases / physiopathology*
  • Myocardial Ischemia / etiology
  • Myocardial Ischemia / physiopathology*
  • Neoplasms / etiology
  • Neoplasms / physiopathology*
  • Pre-Eclampsia / etiology
  • Pre-Eclampsia / physiopathology*
  • Pregnancy