To understand the groundwater environmental quality and the impact of trace elements in the construction of urban agglomeration in China, this study collected 58 groundwater samples from the core area of the Chang-Zhu-Tan urban agglomeration (Changsha, Zhuzhou, Xiangtan) and quantitatively analyzed the content of 13 dissolved trace element and their spatial distribution characteristics. The health risk assessment model was further used to evaluate the human health risk caused by trace element pollution in groundwater. It was observed that Ba had the highest average concentration (0.28 mg·L-1), whereas Cd had the lowest (2.1 × 10-5 mg·L-1). Compared with China's groundwater environmental quality standard, the exceeding rates of Se, Mn, Zn, and Ni concentrations were 37.93%, 17.24%, 1.72% and 1.72%, respectively. Ba, Cd, Co, Cr, Cu, Fe, Mo, and Pb did not exceed the corresponding standards. The 13 trace elements were distributed in a scattered pattern in space and the trace elements in both banks of the Xiang River, Zhuzhou, Weishui River and surrounding areas were relatively high. Health risk assessments showed that the carcinogenic risk values of Cd, Cr, and Pb and the health risk values of 10 non-carcinogenic elements were less than the corresponding maximum acceptable risk level. The health risks associated with non-carcinogenic substances through ingestion were higher than those associated with dermal absorption. Among the non-carcinogenic substances, Ba and Mn posed the greatest health risks. With respect to drinking water exposure, Cr had the highest carcinogenic risk, followed by Pb. Furthermore, Cd had the lowest carcinogenic risk. This study recommended that continuous monitoring of Ba, Mn, and Cr in groundwater should be practiced by assessing the risk of these elements in the Chang-Zhu-Tan urban agglomeration.