Efficient representation of freeform gradient-index profiles for non-rotationally symmetric optical design

Opt Express. 2020 May 11;28(10):14788-14806. doi: 10.1364/OE.391996.

Abstract

Conventional optical designs with gradient index (GRIN) use rotationally-invariant GRIN profiles described by polynomials with no orthogonality. These GRIN profiles have limited effectiveness at correcting aberrations from tilted/decentered or freeform systems. In this paper, a three-dimensional orthogonal polynomial basis set (the FGRIN basis) is proposed, which enables the design of GRIN profiles with both rotational and axial variations. The FGRIN basis is then demonstrated via the design of a 3D GRIN corrector plate targeted to correct the rotationally-variant aberrations induced from a tilted spherical mirror. A sample corrector is manufactured and tested, showing significant correction of astigmatism. The FGRIN basis opens a new design space of 3D rotational variant GRIN profiles, which has the potential of replacing multiple freeform surfaces and simplifying complex systems.