We propose a post-fabrication trimming method for the silicon-on-insulator photonic platform based on localised laser annealing of hydrogen silsesquioxane (HSQ) cladding. The technique is fast, does not degrade the device performance, does not require additional fabrication steps, and can therefore be implemented at minimal cost. Here we experimentally demonstrated how the spectrum of a ring resonator can be shifted by over 1 nm by annealing a section of the device as short as 30 µm, corresponding to a change in the effective refractive index of ∼10-2. Modifications of both the HSQ refractive index and its chemical structure as a function of the annealing temperature are also discussed. Trimming of multi-ring resonators indicate that this technique can be effectively used for post-fabrication reconfiguration of complex photonic circuits or to compensate for the fabrication tolerances of a typical CMOS process.