Background: Continuous enzyme kinetic assays are often used in high-throughput applications, as they allow rapid acquisition of large amounts of kinetic data and increased confidence compared to discontinuous assays. However, data analysis is often rate-limiting in high-throughput enzyme assays, as manual inspection and selection of a linear range from individual kinetic traces is cumbersome and prone to user error and bias. Currently available software programs are specialized and designed for the analysis of complex enzymatic models. Despite the widespread use of initial rate determination for processing kinetic data sets, no simple and automated program existed for rapid analysis of initial rates from continuous enzyme kinetic traces.
Results: An Interactive Continuous Enzyme Kinetics Analysis Tool (ICEKAT) was developed for semi-automated calculation of initial rates from continuous enzyme kinetic traces with particular application to the evaluation of Michaelis-Menten and EC50/IC50 kinetic parameters, as well as the results of high-throughput screening assays. ICEKAT allows users to interactively fit kinetic traces using convenient browser-based selection tools, ameliorating tedious steps involved in defining ranges to fit in general purpose programs like Microsoft Excel and Graphpad Prism, while still maintaining simplicity in determining initial rates. As a test case, we quickly analyzed over 500 continuous enzyme kinetic traces resulting from experimental data on the response of the protein lysine deacetylase SIRT1 to small-molecule activators.
Conclusions: ICEKAT allows simultaneous visualization of individual initial rate fits and the resulting Michaelis-Menten or EC50/IC50 kinetic model fits, as well as hits from high-throughput screening assays. In addition to serving as a convenient program for practicing enzymologists, ICEKAT is also a useful teaching aid to visually demonstrate in real-time how incorrect initial rate fits can affect calculated Michaelis-Menten or EC50/IC50 kinetic parameters. For the convenience of the research community, we have made ICEKAT freely available online at https://icekat.herokuapp.com/icekat.
Keywords: Computer program; Enzyme assay; Enzyme inhibition; Michaelis-Menten; Sirtuin.