Methods: AP was induced in Balb/C mice by ten hourly intraperitoneal injections of caerulein (100 μg/kg) and LPS (5 mg/kg). The MMP inhibitor, BB-94 (20 mg/kg) was intraperitoneally administered 30 min before AP induction. Pancreatitis was confirmed by histology and serum amylase and lipase. Expression of pancreatic proinflammatory mediators and NF-κB activation were assessed. Bone marrow-derived neutrophils (BMDNs) and macrophages (BMDMs) were isolated. BMDNs were activated by phorbol 12-myristate 13-acetate (PMA, 50 ng/ml) and neutrophil reactive oxygen species (ROS) production was recorded. BMDMs were stimulated with 10 ng/ml IFN-γ and 100 ng/ml LPS to induce M1 macrophage polarization.
Results: Pancreatic MMP-9 was markedly upregulated and serum MMP-9 was increased in caerulein-induced pancreatitis. Inhibition of MMP with BB-94 ameliorated pancreatic tissue damage and decreased the expression of proinflammatory cytokines (TNFα and IL-6) or chemokines (CCL2 and CXCL2) and NF-κB activation. Furthermore, using isolated BMDNs and BMDMs, we found that inhibition of MMP with BB-94 markedly decreased neutrophil ROS production, inhibited inflammatory macrophage polarization and NF-κB activation.
Conclusions: Our results showed that inhibition of MMP with BB-94 protected against pancreatic inflammatory responses in caerulein-induced pancreatitis via modulating neutrophil and macrophage activation.
Copyright © 2020 Zengkai Wu et al.