Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates

Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12531-12540. doi: 10.1073/pnas.1918619117. Epub 2020 May 15.

Abstract

An increase in nutrient dose leads to proportional increases in crop biomass and agricultural yield. However, the molecular underpinnings of this nutrient dose-response are largely unknown. To investigate, we assayed changes in the Arabidopsis root transcriptome to different doses of nitrogen (N)-a key plant nutrient-as a function of time. By these means, we found that rate changes of genome-wide transcript levels in response to N-dose could be explained by a simple kinetic principle: the Michaelis-Menten (MM) model. Fitting the MM model allowed us to estimate the maximum rate of transcript change (Vmax), as well as the N-dose at which one-half of Vmax was achieved (Km) for 1,153 N-dose-responsive genes. Since transcription factors (TFs) can act in part as the catalytic agents that determine the rates of transcript change, we investigated their role in regulating N-dose-responsive MM-modeled genes. We found that altering the abundance of TGA1, an early N-responsive TF, perturbed the maximum rates of N-dose transcriptomic responses (Vmax), Km, as well as the rate of N-dose-responsive plant growth. We experimentally validated that MM-modeled N-dose-responsive genes included both direct and indirect TGA1 targets, using a root cell TF assay to detect TF binding and/or TF regulation genome-wide. Taken together, our results support a molecular mechanism of transcriptional control that allows an increase in N-dose to lead to a proportional change in the rate of genome-wide expression and plant growth.

Keywords: Michaelis–Menten kinetics; nitrogen dose; transcriptome regulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arabidopsis
  • Basic-Leucine Zipper Transcription Factors / genetics
  • Basic-Leucine Zipper Transcription Factors / metabolism
  • Gene Expression Regulation, Developmental
  • Gene Expression Regulation, Plant*
  • Kinetics
  • Nitrogen / metabolism*
  • Plant Development*
  • Transcriptome*

Substances

  • Basic-Leucine Zipper Transcription Factors
  • TGA1 protein, Arabidopsis
  • Nitrogen