Various biodegradable or edible films were designed to deal with the environmental threats from plastic films. To overcome the defects of pectin film, the feasibility for the incorporation of CH/PE fiber was explored. Micron-scale novel artificial CH/PE fibers in needle, spindle or whisker shape with a diameter around 25 μm were fabricated via a shearing regime in virtue of electrostatic complexing. The incorporation of CH/PE fiber (mixture) and its size-fractioned portions (small and large) substantially changed PE films in diverse ways. Structurally, the fiber-incorporated films were heterogeneous with the fibers concentrated in the upper layer, although they presented similar FT-IR spectra and XRD pattern to PE film. Regarding the film performance, the incorporation of CH/PE fibers, especially the small portion, rendered the PE film with higher values in water-proof ability, thermal stability, break resistibility, stretchability and UV blocking capacity. More importantly, this work provided an innovative strategy to improve the performance of edible films.
Keywords: Electrostatic complexing; Mechanical property; Thermal stability; UV blocking; Water-proof.
Copyright © 2020 Elsevier B.V. All rights reserved.