An experiment was executed to test the hypothesis that supplementation of dietary threonine (d-Thr), above NRC recommendation to diets containing poorly digestible protein source (PS) may compensate its detrimental effects on overall performance of broilers. In total, nine hundred 1-day-old mixed sex broilers (Ross-308) were randomly distributed over 6 (2 × 3) experimental diets comprising 5 replicates of 30 broilers each for 35 d. The experimental diets contain either soybean meal (SBM) or canola meal (CM) with 3 levels (100, 110, and 120% of NRC recommendation) of d-Thr. During the course of the trial (0 to 35 D), interactions (P < 0.05) between PS and d-Thr were observed for feed intake (FI), body weight gain (BWG), feed conversion ratio (FCR), carcass, and gut health parameters. The broilers fed recommended level (100%) of d-Thr had 7 and 5% poorer FCR compared with those fed diets with 110 and 120% d-Thr, respectively. For villus height (VH), an interaction (P = 0.007) was found between PS and d-Thr level. Broilers consuming SBM diets had 22% longer villi, 10% deeper crypts, and 30% greater VH to crypt depth ratio (VCR) compared to those fed CM. The broilers fed 110% d-Thr diets had 9% lower crypt depth (CD) and 15% greater VCR compared with those fed diets containing NRC recommended levels. CM resulted in 9% lower protein digestibility with lower (P < 0.05) of some AA, whereas it was improved by 7% in broilers fed 120% d-Thr supplemented diets. The bursa and spleen weights were positively affected (P < 0.001) by PS. Threonine supplementation (10%) resulted in 25% greater thymus, 18% heavier bursa, and 30% greater infectious bursal disease titer. In conclusion, supplementation of d-Thr, above NRC recommendation, resulted in a better growth performance and carcass traits, improved ileal digestibility of protein and amino acids, better gut health, and immunity in broilers.
Keywords: amino acid digestibility; broilers; growth performance; gut morphology; threonine.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.