Engineering Two-Dimensional PdAgRh Nanoalloys by Surface Reconstruction for Highly Active and Stable Formate Oxidation Electrocatalysis

ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26694-26703. doi: 10.1021/acsami.0c05929. Epub 2020 May 27.

Abstract

Promoting the formate oxidation reaction (FOR) is central to develop promising direct formate fuel cells, but current electrocatalysts are suffering from low activity and ultrapoor stability. Herein, the ternary PdAgRh nanoalloys with ultrathin two-dimensional architecture are for the first time synthesized and employed as a novel class of electrocatalysts for the FOR. Benefitting from unique nanostructure as well as oxophilic Rh surface oxides, the Pd55Ag30Rh15/C electrocatalyst demonstrates an exceptional FOR activity of 1.85 A mgPd-1, showing a 4.74-fold improvement compared to the commercial Pd/C, and retains the current density of 150 mA mgPd-1 after a long-term test, representing the greatest durability among all available FOR electrocatalysts. More strikingly, extending the upper limit potential (ULP) of cyclic voltammetry is revealed to facilitate the surface reconstruction of the Pd55Ag30Rh15/C electrocatalyst to in situ form Ag surface oxides (Ag-O), resulting in a highly active and stable Pd/Ag-O interface at the atomic scale, which considerably boost the FOR performance. In particular, the reconstructed Pd55Ag30Rh15/C electrocatalyst exhibits a mass activity of 3.26 A mgPd-1 with 74.2% of initial activity retained after 1000 cycles. This work showcases an effective strategy to tune surface reconstruction on multimetallic nanoalloys for robust FOR electrocatalysts and beyond.

Keywords: PdAgRh ternary nanoalloy; excellent stability; formate oxidation reaction; surface reconstruction; two-dimensional.