Aim: To explore the roles of microRNA-let7c (miR-let7c) and transforming growth factor-β2 (TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells.
Methods: Retinal pigment epithelial (ARPE-19) cells were cultured with no serum for 12h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7c mimcs (miR-let7cM), miR-let7c mimcs negative control (miR-let7cMNC) and miR-let7c inhibitor (miR-let7cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence.
Results: The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B (NF-κB) signaling pathway was activated after induction by TGF-β2 (P<0.05). In turn, overexpressed miR-let7c significantly inhibited TGF-β2-induced EMT (P<0.05). However, miR-let7c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082 (P<0.01).
Conclusion: The miR-let7c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.
Keywords: epithelial-to-mesenchymal transition; human retinal pigment epithelial cells; microRNA-let7c; nuclear factor-kappa B pathway; transforming growth factor-β2.
International Journal of Ophthalmology Press.