The antistatic and self-heatable flexible coating is highly desired for next-generation multifunctional clothing. MXene is a promising filler that possesses an excellent conductivity, an efficient photothermal conversion, and an outstanding compatibility with the waterborne polymer. In this study, MXene was integrated with waterborne polyacrylate by a solution-blending method. The polyacrylate/MXene composites display a self-tiered structure, and the composite coated leather possesses a surface resistivity of 7.85 × 109 Ω with 2 wt % loading, satisfying the B-level of the antistatic standard. The polyacrylate/MXene-0.5 wt % shows a higher temperature increase of 46.9 °C than that of pure polyacrylate after being irradiated by a 275 W IR light for 5 min, and the surface temperature of polyacrylate/MXene-0.5 wt % composite coated leather is 5.4 °C higher than that of polyacrylate coated leather after being irradiated by sunlight for 30 min. The tensile strength of the polyacrylate/MXene-1 wt % composite is increased by 28.3% compared with that of pure polyacrylate. All of the results prove its promising application in the multifunctional coating. Moreover, amphiphilic MXene was produced by changing the etching degree, which resulted in a self-tiered structure of the polyacrylate/MXene composite owing to the improved interfacial activity of MXene. The amphiphilic MXene possesses a decreased surface tension and can serve as a stabilizer for a Pickering emulsion, which suggests novel routes for constructing a multifunctional polymer/MXene composite.