Keratinases are promising alternatives over ordinary proteases in several industrial applications due to their unique properties compared with their counterparts in the protease categories. However, their large-scale industrial application is limited by the low expression and poor fermentation efficiency of keratinase. Here, we demonstrate that the expression level of keratinase can be improved by constructing a more efficient enzyme expression system hereby enables the highest production titer as regarding recombinant keratinase production to date. Specially, ten promoters were evaluated and the aprE promoter exhibits a significant promotion of keratinase (kerBv) titer from 165 U/mL to 2605 U/mL in Bacillus subtilis. The batch fermentation mode resulted in a maximum keratinase activity of 7176 U/mL at 36 h in a 5-L fermenter. Furthermore, the extracellular keratinase activity attained up to 16,860 U/mL via fed-batch fermentation within 30 h. The combination of keratinase with l-cysteine brings about 66.4 % degree of degradation of feather. Our work provides a new insight into the development of efficient keratinase fermentation processes with B. subtilis cell factory.
Keywords: Biodegradation; Expression; Fermentation; Keratinase; Promoter screening.
Copyright © 2020 Elsevier Inc. All rights reserved.