Objective: To investigate the caries prevention effect of silver diamine fluoride (SDF) with a carbon dioxide (CO2) laser (λ = 10,600 nm) on dentin. Method: Human dentin slices (n = 10) were prepared and allocated to the following treatments: Group 1 (SDF)-slices received an SDF application. Group 2 (laser)-slices were irradiated with a CO2 laser. Group 3 (laser + SDF)-slices were irradiated with a CO2 laser, followed by an SDF application. Group 4 (negative control)-slices had no treatment. All of the slices were subjected to pH cycling for cariogenic challenge. Lesion depth, nanohardness, and chemical and morphological changes were assessed by microcomputed tomography (micro-CT), nanoindentation, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), respectively. Results: micro-CT determined lesion depths for groups 1-4 were 27 ± 6, 138 ± 32, 17 ± 5, and 182 ± 49 μm, respectively (p < 0.001; group 3 < group 1 < groups 2 and 4). The nanohardness values for groups 1-4 were 456 ± 109, 288 ± 5, 444 ± 142, and 258 ± 76 MPa, respectively (p = 0.003; groups 2 and 4 < groups 1 and 3). EDS determined that the calcium-to-phosphorus molar ratio for groups 1-4 were 1.26 ± 0.12, 1.07 ± 0.19, 1.37 ± 0.08, and 0.80 ± 0.17, respectively (p < 0.001; group 4 < group 2 < groups 1 and 3). SEM evidenced no ablation or cracking on the lased dentin surfaces. The treated dentin showed a relatively more intact and smoother surface morphology compared with the untreated dentin. Conclusions: SDF can reduce dentin demineralization against cariogenic challenge, and the caries preventive effect of SDF is further enhanced through CO2 laser irradiation.
Keywords: carbon dioxide laser; caries prevention; dentin; silver diamine fluoride.