Soil carbon (C) pools and plant community composition are regulated by nitrogen (N) and phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the direction of response varies between systems. Phosphorus limitation may constrain C storage response to N, hence P application to increase plant productivity and thus C sequestration has been suggested. We revisited a 23-yr-old field experiment where N and P had been applied to upland heath, a widespread habitat supporting large soil C stocks. At 10 yr after the last nutrient application we quantified long-term changes in vegetation composition and in soil and vegetation C and P stocks. Nitrogen addition, particularly when combined with P, strongly influenced vegetation composition, favouring grasses over Calluna vulgaris, and led to a reduction in vegetation C stocks. However, soil C stocks did not respond to nutrient treatments. We found 40% of the added P had accumulated in the soil. This study showed persistent effects of N and N + P on vegetation composition, whereas effects of P alone were small and showed recovery. We found no indication that P application could mitigate the effects of N on vegetation or increase C sequestration in this system.
Keywords: long term; nitrogen deposition; nutrient cycling; soil; upland heath; vegetation.
© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.