Cost Analysis of Carbon Capture and Sequestration of Process Emissions from the U.S. Industrial Sector

Environ Sci Technol. 2020 Jun 16;54(12):7524-7532. doi: 10.1021/acs.est.9b07930. Epub 2020 Jun 4.

Abstract

The industrial sector represents roughly 22% of U.S. emissions. Unlike emissions from fossil-fueled power plants, the carbon footprint of the industrial sector represents a complex mixture of stationary combustion and process emissions produced as a reaction byproduct of cement, iron and steel, glass, and oil production. This study quantifies the potential opportunities for low-cost carbon capture and storage (CCS) scenarios with process emissions from the U.S. industrial sector by analyzing the variabilities in point-source capture and geographic proximity to relevant sinks, specifically enhanced oil recovery (EOR) and geologic sequestration opportunities. Using a technology-agnostic cost model developed from mature CO2 capture technologies, costs of CCS are calculated for each of the 656 facilities considered, with application of the U.S. federal tax credit 45Q to qualifying facilities. Capture of these targeted industrial process emission streams may lead to the avoidance of roughly 195 MtCO2/yr (188 MtCO2/yr qualifying for 45Q). A total of 123 facilities have the potential to avoid roughly 68.5 MtCO2/yr at costs below $40/tCO2 delivered. This could be competitive for using CO2 for EOR depending on the price of oil. At regional CO2 collection hubs, emissions of 40 MtCO2/yr can be avoided within 100 miles of the existing Louisiana-Mississippi and Texas-New Mexico pipelines.

MeSH terms

  • Carbon Dioxide / analysis
  • Carbon Sequestration*
  • Carbon*
  • Louisiana
  • Mississippi
  • New Mexico
  • Texas

Substances

  • Carbon Dioxide
  • Carbon