Purpose: Anatomically preshaped implants are needed for exact restoration of the anatomy after fractures of the proximal ulna and ulnar shaft, which enables a good functional outcome. Aim of this computed tomographic analysis was to identify specific characteristics of the ulna. The data serve for the development of a new intramedullary implant for stabilisation of proximal and diaphyseal ulna fractures.
Methods: With a standardized research method 100 CT scans of the ulna were evaluated regarding anatomic parameters like width of the medullary canal, proximal ulna dorsal angulation and varus angulation. Also, correlations of these parameters were analyzed statistically.
Results: The mean proximal ulna dorsal angulation (PUDA) was 6.4° (SD 2.8°), while the mean varus angulation of the proximal ulna was 12.4° (SD 3.3°). The length of the ulna bone was 253.6 mm (SD 19.9 mm) on average. The average minimum diameter of the medullary canal was 4.2 mm (SD 1.1 mm) located at 141.3 mm (SD 19.7 mm) from the olecranon tip. There is a positive correlation between age and minimum diameter in our patient cohort (p< 0.001).
Conclusion: Our study described the anatomy of the proximal ulna and the ulna shaft with a reproducible research method in a representative patient cohort. The knowledge of the evaluated anatomic parameters can lead to an improvement of any implant design for the fixation of proximal and diaphyseal ulna fractures.