Epigenetic regulation of protein translation in KMT2A-rearranged AML

Exp Hematol. 2020 May:85:57-69. doi: 10.1016/j.exphem.2020.04.007. Epub 2020 May 11.

Abstract

Inhibition of the H3K79 histone methyltransferase DOT1L has exhibited encouraging preclinical and early clinical activity in KMT2A (MLL)-rearranged leukemia, supporting the development of combinatorial therapies. Here, we investigated two novel combinations: dual inhibition of the histone methyltransferases DOT1L and EZH2, and the combination with a protein synthesis inhibitor. EZH2 is the catalytic subunit in the polycomb repressive complex 2 (PRC2), and inhibition of EZH2 has been reported to have preclinical activity in KMT2A-r leukemia. When combined with DOT1L inhibition, however, we observed both synergistic and antagonistic effects. Interestingly, antagonistic effects were not due to PRC2-mediated de-repression of HOXA9. HOXA cluster genes are key canonical targets of both KMT2A and the PRC2 complex. The independence of the HOXA cluster from PRC2 repression in KMT2A-r leukemia thus affords important insights into leukemia biology. Further studies revealed that EZH2 inhibition counteracted the effect of DOT1L inhibition on ribosomal gene expression. We thus identified a previously unrecognized role of DOT1L in regulating protein production. Decreased translation was one of the earliest effects measurable after DOT1L inhibition and specific to KMT2A-rearranged cell lines. H3K79me2 chromatin immunoprecipitation sequencing patterns over ribosomal genes were similar to those of the canonical KMT2A-fusion target genes in primary AML patient samples. The effects of DOT1L inhibition on ribosomal gene expression prompted us to evaluate the combination of EPZ5676 with a protein translation inhibitor. EPZ5676 was synergistic with the protein translation inhibitor homoharringtonine (omacetaxine), supporting further preclinical/clinical development of this combination. In summary, we discovered a novel epigenetic regulation of a metabolic process-protein synthesis-that plays a role in leukemogenesis and affords a combinatorial therapeutic opportunity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Enhancer of Zeste Homolog 2 Protein / antagonists & inhibitors
  • Enhancer of Zeste Homolog 2 Protein / genetics
  • Enhancer of Zeste Homolog 2 Protein / metabolism
  • Epigenesis, Genetic*
  • Gene Expression Regulation, Leukemic*
  • Gene Rearrangement*
  • Histone-Lysine N-Methyltransferase / antagonists & inhibitors
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism
  • Humans
  • Leukemia, Myeloid, Acute / genetics
  • Leukemia, Myeloid, Acute / metabolism*
  • Leukemia, Myeloid, Acute / pathology
  • Myeloid-Lymphoid Leukemia Protein / antagonists & inhibitors
  • Myeloid-Lymphoid Leukemia Protein / genetics
  • Polycomb Repressive Complex 2 / genetics
  • Polycomb Repressive Complex 2 / metabolism
  • Protein Biosynthesis*

Substances

  • Homeodomain Proteins
  • KMT2A protein, human
  • homeobox protein HOXA9
  • Myeloid-Lymphoid Leukemia Protein
  • DOT1L protein, human
  • EZH2 protein, human
  • Enhancer of Zeste Homolog 2 Protein
  • Histone-Lysine N-Methyltransferase
  • Polycomb Repressive Complex 2