Hypoxia-Activated Prodrug Derivatives of Carbonic Anhydrase Inhibitors in Benzenesulfonamide Series: Synthesis and Biological Evaluation

Molecules. 2020 May 18;25(10):2347. doi: 10.3390/molecules25102347.

Abstract

Hypoxia, a common feature of solid tumours' microenvironment, is associated with an aggressive phenotype and is known to cause resistance to anticancer chemo- and radiotherapies. Tumour-associated carbonic anhydrases isoform IX (hCA IX), which is upregulated under hypoxia in many malignancies participating to the microenvironment acidosis, represents a valuable target for drug strategy against advanced solid tumours. To overcome cancer cell resistance and improve the efficacy of therapeutics, the use of bio-reducible prodrugs also known as Hypoxia-activated prodrugs (HAPs), represents an interesting strategy to be applied to target hCA IX isozyme through the design of selective carbonic anhydrase IX inhibitors (CAIs). Here, we report the design, synthesis and biological evaluations including CA inhibition assays, toxicity assays on zebrafish and viability assays on human cell lines (HT29 and HCT116) of new HAP-CAIs, harboring different bio-reducible moieties in nitroaromatic series and a benzenesulfonamide warhead to target hCA IX. The CA inhibition assays of this compound series showed a slight selectivity against hCA IX versus the cytosolic off-target hCA II and hCA I isozymes. Toxicity and viability assays have highlighted that the compound bearing the 2-nitroimidazole moiety possesses the lowest toxicity (LC50 of 1400 µM) and shows interesting results on viability assays.

Keywords: carbonic anhydrase; hypoxia-activated prodrug; hypoxic tumour; inhibitors; sulfonamides.

MeSH terms

  • Antigens, Neoplasm / genetics*
  • Benzenesulfonamides
  • Carbonic Anhydrase IX / genetics*
  • Carbonic Anhydrase Inhibitors / chemistry*
  • Carbonic Anhydrase Inhibitors / pharmacology
  • Cell Proliferation / drug effects
  • HCT116 Cells
  • HT29 Cells
  • Humans
  • Isoenzymes / chemistry
  • Isoenzymes / genetics
  • Molecular Structure
  • Neoplasms / drug therapy*
  • Neoplasms / genetics
  • Neoplasms / pathology
  • Prodrugs / chemistry
  • Prodrugs / pharmacology
  • Structure-Activity Relationship
  • Sulfonamides / chemistry*
  • Sulfonamides / pharmacology
  • Tumor Hypoxia / drug effects
  • Tumor Hypoxia / genetics
  • Tumor Microenvironment / drug effects

Substances

  • Antigens, Neoplasm
  • Carbonic Anhydrase Inhibitors
  • Isoenzymes
  • Prodrugs
  • Sulfonamides
  • CA9 protein, human
  • Carbonic Anhydrase IX