Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing

Dent Mater. 2020 Jul;36(7):865-883. doi: 10.1016/j.dental.2020.04.008. Epub 2020 May 22.

Abstract

Objective: The aim of this study was to develop bioactive and osseointegrable polyetheretherketone (PEEK)-based composite filaments melt-blended with novel amorphous magnesium phosphate (AMP) particles for 3D printing of dental and orthopedic implants.

Materials and methods: A series of materials and biological analyses of AMP-PEEK were performed. Thermal stability, thermogravimetric and differential scanning calorimetry curves of as-synthesized AMP were measured. Complex viscosity, elastic modulus and viscous modulus were determined using a rotational rheometer. In vitro bioactivity was analyzed using SBF immersion method. SEM, EDS and XRD were used to study the apatite-forming ability of the AMP-PEEK filaments. Mouse pre-osteoblasts (MC3T3-E1) were cultured and analyzed for cell viability, proliferation and gene expression. For in vivo analyses, bare PEEK was used as the control and 15AMP-PEEK was chosen based on its in vitro cell-related results. After 4 or 12 weeks, animals were euthanized, and the femurs were collected for micro-computed tomography (μ-CT) and histology.

Results: The collected findings confirmed the homogeneous dispersion of AMP particles within the PEEK matrix with no phase degradation. Rheological studies demonstrated that AMP-PEEK composites are good candidates for 3D printing by exhibiting high zero-shear and low infinite-shear viscosities. In vitro results revealed enhanced bioactivity and superior pre-osteoblast cell function in the case of AMP-PEEK composites as compared to bare PEEK. In vivo analyses further corroborated the enhanced osseointegration capacity for AMP-PEEK implants.

Significance: Collectively, the present investigation demonstrated that AMP-PEEK composite filaments can serve as feedstock for 3D printing of orthopedic and dental implants due to enhanced bioactivity and osseointegration capacity.

Keywords: 3D printing; Amorphous magnesium phosphate; Implants; Osseointegration; Polyetheretherketone.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Benzophenones
  • Dental Implants*
  • Ketones
  • Magnesium Compounds
  • Mice
  • Phosphates
  • Polyethylene Glycols
  • Polymers
  • Printing, Three-Dimensional
  • X-Ray Microtomography

Substances

  • Benzophenones
  • Dental Implants
  • Ketones
  • Magnesium Compounds
  • Phosphates
  • Polymers
  • polyetheretherketone
  • Polyethylene Glycols
  • magnesium phosphate