Purkinje system hyperexcitability and ventricular arrhythmia risk in type 3 long QT syndrome

Heart Rhythm. 2020 Oct;17(10):1768-1776. doi: 10.1016/j.hrthm.2020.05.019. Epub 2020 May 23.

Abstract

Background: Gain-of-function variants in the SCN5A-encoded Nav1.5 sodium channel cause type 3 long QT syndrome (LQT3) and multifocal ectopic Purkinje-related premature contractions. Although the Purkinje system is uniquely sensitive to the action potential-prolonging effects of LQT3-causative variants, the existence of additional Purkinje phenotype(s) in LQT3 is unknown.

Objective: The purpose of this study was to determine the prevalence and clinical implications of frequent fascicular/Purkinje-related premature ventricular contractions (PVCs) and short-coupled ventricular arrhythmias (VAs), suggestive of Purkinje system hyperexcitability (PSH), in a single-center LQT3 cohort.

Methods: A retrospective analysis of 177 SCN5A-positive patients was performed to identify individuals with a LQT3 phenotype. Available electrocardiographic, electrophysiology study, device, and genetic data from 91 individuals with LQT3 were reviewed for evidence of presumed fascicular PVCs and short-coupled VAs. The relationship between PSH and ventricular fibrillation events was assessed by Kaplan-Meier and Cox regression analyses.

Results: Overall, 30 of 91 patients with LQT3 (33%) exhibited evidence of presumed PSH (fascicular PVCs 30 of 30 [100%]; short-coupled VAs 17 of 30 [56%]). Kaplan-Meier and Cox regression analyses demonstrated an increased risk of ventricular fibrillation events in individuals with LQT3 and PSH (log-rank, P < .03; hazard ratio 3.95; 95% confidence interval 1.15-15.7; P = .03). Interestingly, variants in the voltage-sensing domain regions of Nav1.5 were more frequently observed in patients with LQT3 and PSH than those without (19 of 30 [63%] vs 9 of 61 [15%]; P < .0001).

Conclusion: This study demonstrates that a discernible Purkinje phenotype is present in one-third of LQT3 cases and increases the risk of potentially lethal VAs. Further study is needed to determine whether a distinct cellular electrophysiology phenotype underlies this phenomenon.

Keywords: Cardiac events; Premature ventricular contractions; Purkinje system; Type 3 long QT syndrome; Ventricular arrhythmias.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Cardiac Conduction System Disease / complications
  • Cardiac Conduction System Disease / diagnosis
  • Cardiac Conduction System Disease / physiopathology*
  • Child
  • Female
  • Humans
  • Long QT Syndrome / complications
  • Long QT Syndrome / diagnosis
  • Long QT Syndrome / physiopathology*
  • Male
  • Myocytes, Cardiac / physiology
  • Patch-Clamp Techniques
  • Purkinje Cells / physiology*
  • Retrospective Studies
  • Tachycardia, Ventricular / complications
  • Tachycardia, Ventricular / physiopathology*
  • Young Adult

Supplementary concepts

  • Long QT syndrome type 3