The Ameliorative Effects of Pycnogenol® on Liver Ischemia-Reperfusion Injury in Rats

Turk J Pharm Sci. 2017 Dec;14(3):257-263. doi: 10.4274/tjps.49369. Epub 2017 Nov 20.

Abstract

Objectives: Pycnogenol® (PYC®), a standardized extract from the bark of Pinus maritima, consists of different phenolic compounds. PYC® has shown to have protective effects on chronic diseases such as diabetes, asthma, cancer, and immune disorders. The aim of this study was to determine the effects of PYC® against the DNA damage and biochemical changes in blood, liver, and lung tissues of ischemia-reperfusion (IR)-induced Wistar albino rats.

Materials and methods: A sham group, IR injury-induced group, and IR+PYC® group were formed. Ischemia was induced and sustained for 45 min, then the ischemic liver was reperfused, which was sustained for a further 120 min at the end of this period. After anesthesia and before the IR inducement, 100 mg/kg PYC® was given to the IR+PYC® group through intraperitoneal injections. The total oxidant (TOS) and total antioxidant status (TAS), total thiol levels (TTL), advanced oxidation protein products (AOPP), and biochemical parameters [myeloperoxidase (MPO), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH)] in the rats were analyzed using spectrophotometric methods and DNA damage was assessed using single-cell gel electrophoresis.

Results: The levels of TOS, TTL, MPO, AOPP, ALT, AST, and LDH were significantly decreased in the IR+PYC® group compared with the IR group (p<0.05). The levels of TAS were significantly increased in the IR+PYC® group compared with the IR group (p<0.05). PYC® reduced the DNA damage when compared with the IR group (p<0.05).

Conclusion: The present results suggest that PYC® treatment might have a role in the prevention of IR-induced oxidative damage by decreasing DNA damage and increasing antioxidant status.

Keywords: DNA damage; Pycnogenol; ischemia reperfusion injury.