Introduction: Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Accumulating evidence has revealed that the slow progressive deterioration of AD is associated with oxidative stress and chronic inflammation in the brain. Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2), which acts through the Nrf2/ARE pathway, is a key regulator of the antioxidant and anti-inflammatory response. Although recent data show a link between Nrf2 and AD-related cognitive decline, the mechanism is still unknown. Thus, we explored how Nrf2 protects brain cells against the oxidative stress and inflammation of AD in a mouse model of AD (APP/PS1 transgenic (AT) mice) with genetic removal of Nrf2.
Methods: The spatial learning and memory abilities of 12-month-old transgenic mice were evaluated using a Morris water maze test. Hippocampal levels of Nrf2, Aβ, and p-tauS404 and of astrocytes and microglia were determined by immunostaining. Inflammatory cytokines were determined by ELISA and quantitative real-time polymerase chain reaction (qRT-PCR). Oxidative stress was measured by 8-hydroxydeoxyguanosine immunohistochemistry, and the antioxidant response was determined by qRT-PCR.
Results: The spatial learning and memory abilities of AT mice were impaired after Nrf2 deletion. Aβ and p-tauS404 accumulation was increased in the hippocampus of AT/Nrf2-KO mice. Astroglial and microglial activation was exacerbated, followed by upregulation of the proinflammatory cytokines IL-1β, IL-6, and TNF-α.
Conclusion: Our present results show that Nrf2 deficiency aggravates AD-like pathology in AT mice. This phenotype was associated with increased levels of oxidative and proinflammatory markers, which suggests that the Nrf2 pathway may be a promising therapeutic target for AD.
Copyright © 2020 Peng Ren et al.