Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.