Epsilon toxin (ETX) is a 33-kDa pore-forming toxin produced by type B and D strains of Clostridium perfringens. We previously found that ETX caused haemolysis of human red blood cells, but not of erythrocytes from other species. The cellular and molecular mechanisms of ETX-mediated haemolysis are not well understood. Here, we investigated the effects of ETX on erythrocyte volume and the role of the putative myelin and lymphocyte (MAL) receptors in ETX-mediated haemolysis. We observed that ETX initially decreased erythrocyte size, followed by a gradual increase in volume until lysis. Moreover, ETX triggered phosphatidylserine (PS) exposure and enhanced ceramide abundance in erythrocytes. Cell shrinkage, PS exposure and enhanced ceramide abundance were preceded by increases in intracellular Ca2+ concentration. Interestingly, lentivirus-mediated RNA interference studies in the human erythroleukaemia cell line (HEL) cells confirmed that MAL contributes to ETX-induced cytotoxicity. Additionally, ETX was shown to bind to MAL in vitro. The results of this study recommend that ETX-mediated haemolysis is associated with MAL receptor activation in human erythrocytes. These data imply that interventions affecting local MAL-mediated autocrine and paracrine signalling may prevent ETX-mediated erythrocyte damage.
Keywords: ceramide; epsilon toxin; haemolysis; human erythroleukaemia cell line; myelin and lymphocyte receptor; phosphatidylserine.
© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.