Electronic excitations in the valence shell of Ne clusters were studied by fluorescence spectroscopy. The measured fluorescence excitation functions contain information about the nature and number of excitonic states and the mean cluster size of the produced size distribution. Mean cluster sizes were determined by comparing surface and bulk contributions using a multidimensional fitting algorithm, with good agreement to commonly used scaling laws. The influence of different size distributions, which were not considered in previous investigations, on homogeneous noble gas cluster jets is implemented in the proposed model. The present work is the first approach using fluorescence spectroscopy for the determination of the mean size of Ne cluster jets created by supersonic expansion.