Alzheimer's disease (AD) is the leading cause of dementia with very limited therapeutic options. Amyloid β (Aβ) and phosphorylated Tau (p-Tau) are key pathogenic molecules in AD. P38α-MAPK is specifically activated in AD lesion sites. However, its effects on AD pathogenesis, especially on p-Tau-associated brain pathology, and the underlying molecular mechanisms remain unclear. We mated human APP-transgenic mice and human P301S Tau-transgenic mice with mapk14-floxed and neuron-specific Cre-knock-in mice. We observed that deletion of p38α-MAPK specifically in neurons improves the cognitive function of both 9-month-old APP and Tau-transgenic AD mice, which is associated with decreased Aβ and p-Tau load in the brain. We further used next-generation sequencing to analyze the gene transcription in brains of p38α-MAPK deficient and wild-type APP-transgenic mice, which indicated that deletion of p38α-MAPK regulates the transcription of calcium homeostasis-related genes, especially downregulates the expression of grin2a, a gene encoding NMDAR subunit NR2A. Cell culture experiments further verified that deletion of p38α-MAPK inhibits NMDA-triggered calcium influx and neuronal apoptosis. Our systemic studies of AD pathogenic mechanisms using both APP- and Tau-transgenic mice suggested that deletion of neuronal p38α-MAPK attenuates AD-associated brain pathology and protects neurons in AD pathogenesis. This study supports p38α-MAPK as a novel target for AD therapy.
Keywords: Alzheimer's disease; Mapk14; calcium homeostasis; neurodegeneration; transcriptome analysis.
© 2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.