Background: External radiotherapy has become indispensable in oncological therapies. Unfortunately, radiation is responsible for serious side effects, such as radiodermatitis. The skin is weakened and ulcerated. Our study aimed to evaluate the subcutaneous transfer of microfat (MF) alone and two mixes: MF+Platelet-rich plasma (PRP) and MF+stromal vascular fraction (SVF) to treat radiation-induced skin lesions.
Method: We defined randomly five experimental groups of nine mice: 1 healthy control group and 4 irradiated (60 Grey) and treated groups. The skin lesions were treated 3 months after irradiation by MF, MF+PRP (50%-50%), MF+SVF (90%-10%) or Ringer-lactate subcutaneous injections. Wound healing was evaluated at 1, 2 and 3 months post-injection and histological wound analysis at 3 months, after euthanasia.
Results: All the irradiated mice presented with wounds. After sham-injection, the wound area increased by 91.1±71.1% versus a decrease of 15.9±23.1% after MF alone (NS), 27.3±23.8% after MF+SVF (NS) and 76.4±7.7% after MF+PRP (P=0.032). A significative reduction of skin thickness in wound periphery was measured for the three treated groups compared to sham-injection (P<0.05) but not in the healed wounds (NS). The most important subcutaneous neo-vessel density was shown after MF+SVF injection.
Conclusion: The MF+PRP mix was the most efficient product to increase healing. The MF+SVF mix showed the highest rate of neo-angiogenesis but was disappointing in terms of healing.
Level of evidence: Not gradable.
Keywords: Fat transfer; Platelet-Rich Plasma; Radiodermitis; Stromal Vascular Fraction; Wound Healing.
Copyright © 2020 Elsevier Ltd and ISBI. All rights reserved.