Hydraulic conductance and water transport in plants may be affected by environmental factors, which in turn regulate leaf gas exchange, plant growth and yield. In this study, we assessed the combined effects of radiation and water regimes on leaf stomatal conductance (gs), petiole specific hydraulic conductivity (Kpetiole) and anatomy (vessel number and size); and leaf aquaporin gene expression of field-grown grapevines at the Agroscope Research Station (Leytron, Switzerland). Chasselas vines were subjected to two radiation (sun and shade) levels combined with two water (irrigated and water-stressed) regimes. The sun and shade leaves received ~61.2 and 1.48molm-2day-1 of photosynthetically active radiation, respectively, during a clear-sky day. The irrigated vines were watered weekly from bloom to veraison whereas the water-stressed vines did not receive any irrigation during the season. Water stress reduced gs and Kpetiole relative to irrigated vines throughout the season. The petioles from water-stressed vines showed fewer large-sized vessels than those from irrigated vines. The shaded leaves from the irrigated vines exhibited a higher Kpetiole than the sun leaves at the end of the season, which was partially explained by a higher number of vessels per petiole and possibly by the upregulation of some of the aquaporins measured in the leaf. These results suggest that not only plant water status but also the light environment at the leaf level affected leaf and petiole hydraulics.