Walking motor imagery ability is thought to be associated with a fear of falling; however, no studies have compared fall risk and motor imagery ability. This study aimed to ascertain the time difference between imagined and physical walking in older adults at low and high risks of falling. Motor imagery ability was assessed using mental chronometry, which measures the imagined time required for movement. Participants included 31 older adults classified as having a high (n = 15) or low (n = 16) risk of falling based on single leg stance time. The time required for imagined and physical walking was measured using 5 m long walkways with three different widths (15, 25, and 50 cm), and the temporal errors (absolute and constant error) were compared. Physical walking time was significantly longer in the high-risk group than in the low-risk group for the 15 and 25 cm wide walkways. The absolute error between the imagined and physical walking times was significantly larger in the high-risk group than in the low-risk group for the 15 and 25 cm wide walkways. There was also a significant difference in the constant error between the high- and low-risk groups between the imagined and physical walking times for all three walkways. Older adults who may be at a higher risk of falling showed longer walking times during action execution but overestimated their performance (i.e., they believe they would be faster) during motor imagery. Therefore, the time difference between imagined and physical walking could, in part, be useful as a tool for assessing fall risk based on motor imagery.
Keywords: mental chronometry; motor imagery; older adult; risk of fall; walking.