Contemporary x-ray wavelength metrology and traceability

Radiat Phys Chem Oxf Engl 1993. 2020 Feb:167:108392. doi: 10.1016/j.radphyschem.2019.108392. Epub 2019 Jul 3.

Abstract

We report recent advances in absolute x-ray wavelength metrology in the context of producing modern standard reference data. Primary x-ray wavelength standards are produced today using diffraction spectrometers using crystal optics arranged to be operated in dispersive and non-dispersive geometries, giving natural-line-width limited profiles with high resolution and accuracy. With current developments, measurement results can be made traceable to the Système internationale definition of the meter by using diffraction crystals that have absolute lattice-spacing provenance through x-ray-optical interferometry. Recent advances in goniometry, innovation of electronic x-ray area detectors, and new in situ alignment and measurement methods now permit robust measurement and quantification of previously-elusive systematic uncertainties. This capability supports infrastructures like the NIST Standard Reference Data programs and the International Initiative on X-ray Fundamental Parameters and their contributions to science and industry. Such data projects are further served by employing complementary wavelength-and energy-dispersive spectroscopic techniques. This combination can provide, among other things, new tabulations of less-intense x-ray lines that need to be identified in x-ray fluorescence investigation of uncharacterized analytes. After delineating the traceability chain for primary x-ray wavelength standards, and NIST efforts to produce standard reference data and materials in particular, this paper posits the new opportunities for x-ray reference data tabulation that modern methods now afford.

Keywords: Reference data; Standards; Traceability; Wavelength metrology; X-ray spectroscopy.