This study investigated the muscle strength and performance fatigability of the forearms in eight male orthopaedic surgeons when performing bone screw fixations. Each surgeon performed an eight-bone screws operations in a porcine femur model to simulate fractural fixation using plating technique. The pre- and post-fatigue maximum isometric forces and corresponding electromyography responses were measured to assess the forearm muscle strength loss and fatigue due to screwing. Results showed that after eight bone screws were inserted, the maximal grip force, maximal driving torque and maximal push force losses were approximately 29%, 20% and 23%, respectively. While the grip force and/or driving torque acting, both the brachioradialis and extensor carpi ulnaris had a higher percentage change of EMG than the biceps brachii. The driving forces decreased with the number of screw insertions; however, the insertion time increased parabolically with the number of screws and significantly decreased the insertion rate of the screws, indicating that forearm muscle fatigue may occur in surgeons who treat fracture fixation using more than eight bone screws.
Keywords: Handgrip; Maximum isometric forces; Performance fatigability; driving torque.
Copyright © 2020 Elsevier Ltd. All rights reserved.