Aims: Liver kinase B1 (LKB1) deficiency is associated with reduced expression of programmed death ligand 1 (PD-L1) and inferior clinical outcomes of PD-1/PD-L1 blockade in non-small cell lung cancer (NSCLC). This study aimed to investigate the mechanism by which LKB1 regulates PD-L1 expression and its role in programmed death 1 (PD-1) blockade therapy in NSCLC.
Main methods: The impact of LKB1 on PD-L1 was assessed by western blot, qRT-PCR and immunohistochemistry in NSCLC. Activators/inhibitors of AMPK and NRF2 were applied to explore the mechanisms underlying the regulation of PD-L1 by LKB1. Efficiency of combined application of metformin and PD-1 blockade was evaluated in immunocompetent C57BL/6 mice.
Key findings: A remarkable positive correlation between LKB1 and PD-L1 expression was demonstrated in NSCLC tissues. Knockdown of LKB1 decreased PD-L1 in TC-1 cells, whereas overexpression of LKB1 increased PD-L1 in A549 cells. We further characterized that AMPK mediated the upregulation of PD-L1 by LKB1. Inhibition of AMPK or NRF2 markedly reduced PD-L1 in LKB1-intact NSCLC cells. In contrast, activation of AMPK or NRF2 reversed PD-L1 expression in LKB1-deficient NSCLC cells. Combined administration of metformin and anti-PD-1 antibody efficiently inhibited the growth of LKB1-intact tumors, whereas no obvious suppression was observed in LKB1-deficient tumors.
Significance: These findings demonstrated that LKB1 upregulates PD-L1 expression in NSCLC by activating the AMPK and KEAP1/NRF2 signaling. Activation of LKB1-AMPK with metformin improves the therapeutic effect of PD-1 blockade in NSCLC with wild-type LKB1.
Keywords: AMPK; Immunotherapy; LKB1; Metformin; NSCLC; PD-1; PD-L1.
Copyright © 2020 Elsevier Inc. All rights reserved.