Predicting the naturalistic course in anxiety disorders using clinical and biological markers: a machine learning approach

Psychol Med. 2022 Jan;52(1):57-67. doi: 10.1017/S0033291720001658. Epub 2020 Jun 11.

Abstract

Background: Disease trajectories of patients with anxiety disorders are highly diverse and approximately 60% remain chronically ill. The ability to predict disease course in individual patients would enable personalized management of these patients. This study aimed to predict recovery from anxiety disorders within 2 years applying a machine learning approach.

Methods: In total, 887 patients with anxiety disorders (panic disorder, generalized anxiety disorder, agoraphobia, or social phobia) were selected from a naturalistic cohort study. A wide array of baseline predictors (N = 569) from five domains (clinical, psychological, sociodemographic, biological, lifestyle) were used to predict recovery from anxiety disorders and recovery from all common mental disorders (CMDs: anxiety disorders, major depressive disorder, dysthymia, or alcohol dependency) at 2-year follow-up using random forest classifiers (RFCs).

Results: At follow-up, 484 patients (54.6%) had recovered from anxiety disorders. RFCs achieved a cross-validated area-under-the-receiving-operator-characteristic-curve (AUC) of 0.67 when using the combination of all predictor domains (sensitivity: 62.0%, specificity 62.8%) for predicting recovery from anxiety disorders. Classification of recovery from CMDs yielded an AUC of 0.70 (sensitivity: 64.6%, specificity: 62.3%) when using all domains. In both cases, the clinical domain alone provided comparable performances. Feature analysis showed that prediction of recovery from anxiety disorders was primarily driven by anxiety features, whereas recovery from CMDs was primarily driven by depression features.

Conclusions: The current study showed moderate performance in predicting recovery from anxiety disorders over a 2-year follow-up for individual patients and indicates that anxiety features are most indicative for anxiety improvement and depression features for improvement in general.

Keywords: agoraphobia; anxiety disorders; classification; generalized anxiety disorder; machine learning; panic disorder; random forest classification; social phobia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agoraphobia / psychology
  • Anxiety Disorders / diagnosis
  • Anxiety Disorders / psychology
  • Biomarkers
  • Cohort Studies
  • Depressive Disorder, Major* / psychology
  • Humans
  • Machine Learning
  • Panic Disorder* / diagnosis
  • Panic Disorder* / psychology
  • Phobic Disorders*

Substances

  • Biomarkers