Synthesis and Structure-Activity Relationships of 5'-Aryl-14-alkoxypyridomorphinans: Identification of a μ Opioid Receptor Agonist/δ Opioid Receptor Antagonist Ligand with Systemic Antinociceptive Activity and Diminished Opioid Side Effects

J Med Chem. 2020 Jul 23;63(14):7663-7694. doi: 10.1021/acs.jmedchem.0c00503. Epub 2020 Jun 30.

Abstract

We previously identified a pyridomorphinan (6, SRI-22138) possessing a 4-chlorophenyl substituent at the 5'-position on the pyridine and a 3-phenylpropoxy at the 14-position of the morphinan as a mixed μ opioid receptor (MOR) agonist and δ/κ opioid receptor (DOR/KOR) antagonist with potent antinociceptive activity and diminished tolerance and dependence in rodents. Structural variations at the 5'- and 14-positions of this molecule gave insights into the structure-activity relationships for binding and functional activity. Subtle structural changes exerted significant influence, particularly on the ability of the compounds to function as agonists at the MOR. In vivo evaluation identified compound 20 (SRI-39067) as a MOR agonist/DOR antagonist that produced systemically active potent antinociceptive activity in tail-flick assay in mice, with diminished tolerance, dependence/withdrawal, reward liability, and respiratory depression versus morphine. These results support the hypothesis that mixed MOR agonist/DOR antagonist ligands may emerge as novel opioid analgesics with reduced side effects.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Analgesics, Opioid / chemical synthesis
  • Analgesics, Opioid / metabolism
  • Analgesics, Opioid / therapeutic use*
  • Animals
  • CHO Cells
  • Cricetulus
  • Drug Design
  • Humans
  • Male
  • Mice
  • Microsomes, Liver / metabolism
  • Molecular Docking Simulation
  • Molecular Structure
  • Morphinans / chemical synthesis
  • Morphinans / metabolism
  • Morphinans / therapeutic use*
  • Narcotic Antagonists / chemical synthesis
  • Narcotic Antagonists / metabolism
  • Narcotic Antagonists / therapeutic use*
  • Protein Binding
  • Pyridines / chemical synthesis
  • Pyridines / metabolism
  • Pyridines / therapeutic use*
  • Receptors, Opioid, delta / antagonists & inhibitors*
  • Receptors, Opioid, delta / metabolism
  • Receptors, Opioid, mu / agonists*
  • Receptors, Opioid, mu / metabolism
  • Structure-Activity Relationship

Substances

  • Analgesics, Opioid
  • Morphinans
  • Narcotic Antagonists
  • Pyridines
  • Receptors, Opioid, delta
  • Receptors, Opioid, mu