Single-Chip Dynamic Nuclear Polarization Microsystem

Anal Chem. 2020 Jul 21;92(14):9782-9789. doi: 10.1021/acs.analchem.0c01221. Epub 2020 Jun 26.

Abstract

Integration of the sensitivity-relevant electronics of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers on a single chip is a promising approach to improve the limit of detection, especially for samples in the nanoliter and subnanoliter range. Here, we demonstrate the cointegration on a single silicon chip of the front-end electronics of NMR and ESR detectors. The excitation/detection planar spiral microcoils of the NMR and ESR detectors are concentric and interrogate the same sample volume. This combination of sensors allows one to perform dynamic nuclear polarization (DNP) experiments using a single-chip-integrated microsystem having an area of about 2 mm2. In particular, we report 1H DNP-enhanced NMR experiments on liquid samples having a volume of about 1 nL performed at 10.7 GHz(ESR)/16 MHz(NMR). NMR enhancements as large as 50 are achieved on TEMPOL/H2O solutions at room temperature. The use of state-of-the-art submicrometer integrated circuit technologies should allow the future extension of the single-chip DNP microsystem approach proposed here up the THz(ESR)/GHz(NMR) region, corresponding to the strongest static magnetic fields currently available. Particularly interesting is the possibility to create arrays of such sensors for parallel DNP-enhanced NMR spectroscopy of nanoliter and subnanoliter samples.

Publication types

  • Research Support, Non-U.S. Gov't