Water and soil contamination by industrial wastes is a global concern. Biological treatment of industrial wastewater using bioreactors allows the removal of organic matter and nutrients and enables either reuse or safe discharge. Wastewater bioremediation depends in part on the microbial communities present in the bioreactor. To ascertain which communities may play a role in the remediation process, the present study investigates the microbial community structure and diversity of microorganisms found in a full-scale membrane bioreactor (MBR) for industrial wastewater treatment. The study was carried out using high-throughput data observations following a failure (crash) of the MBR and during the extended recovery of the process. Results revealed a positive correlation between the MBR's ability to remove organic matter and its microbial community richness. The significant changes in relative microbial abundance between crash and recovery periods of the MBR revealed the important role of specific bacterial genera in wastewater treatment processes. A whole-genome metagenomics based comparison showed a clear difference in microbial makeup between two functional periods of MBR activity. The crash period was characterized by abundance in bacteria belonging to Achromobacter, Acinetobacter, Halomonas, Pseudomonas and an uncultured MBAE14. The recovery period on the other hand was characterized by Aquamicrobium and by Wenzhouxiangella marina. Our study also revealed some interesting functional pathways characterizing the microbial communities from the two periods of bioreactor function, such as Nitrate and Sulfate reduction pathways. These differences indicate the connection between the bacterial diversity of the MBR and its efficiency to remove TOC.
Keywords: Bioremediation; MBR; Microbial community; Wastewater.
Copyright © 2020 Elsevier Ltd. All rights reserved.